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ON THE BREAKDOWN OF RATE-EQUILIBRIUM RELATIONSHIPS

Addy Pross
Department of Chemistry

Ben-Gurion University of the Negev, Beer Sheva, Israel

Summary. Rate-equilibrium relationships are shown to be valid for only those reactions in
which charge is generated or destroyed at a site adjacent to the position of substitution.

Rate-equilibrium relationships constitute one of the basic concepts of physical organic

2

chemistry.1 This relationship, expressed in eq. 1, suggests that for a given reaction family

perturbations on equilibria will only be partially reflected in reaction rates, i.e., a will
¥ o
A(AG') = aA(AG®) n

take on values in the range 0 to 1.

In this paper we wish to point out that there are many reaction families that do not obey
a rate-equilibrium relationship. An example of such a reaction family for which there is no

correlation between rates and equilibria is presented in eq. 2. For this family of identity

ce +  CHCL —_— C!_CHZ + ce” @
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exchange reactions, a change in the substituent, Y, will have no effect on tihe reac-

tion equilibrium: for this entire family K = 1. However a change in Y will modify the
reaction rate. Clearly for this restricted family of reactions therefore, there is no rate-
equilibrium relationship. A plot of log k against log K, of course, does provide a straight
line — however the slope of that line (a = ®») leaves the usual mechanistic interpretations of

s e s 3
o rather deficient.

The question now arises as to why there is no true rate-equilibrium relationship for the
reaction family of eq. 2 and what is the general rule that enables rate-equilibrium relationship:s
to be observed in other reaction families. The rule may be stated as follows: reaction

families in which the substituent is adjacent to a site at which charge is neither generated

nor destroyed in the products will not exhibit a rate-equilibrium relationship. Conversely,

reaction families in which charge is generated or destroyed in the products are likely to obey

a rate-equilibrium relationship. Thus in the reaction family of eq. 2 the aryl group containing

the substituent is adjacent to a benzylic carbon which bears no formal charge in both reactants
and products. Since no charge change has taken place, no rate-equilibrium relationship is
anticipated. On the basis of this principle it becomes apparent that the breakdown of the rate-
equilibrium relationship occurs not just for identity reactions (for which, by definition, the
change in charge, at all points in the molecules, is zero). Non-identity reactions, e.g. eq. 3,
are also likely to show no correlation between rates and equilibria.

HO + cuch. —_— HOCH, + cL

(3

Let us now examine a typical reaction for which a rate-equilibrium relationship is observed

(eq. 4)6. In this example the substituent is adjacent to a site (the nucleophilic N) in which

N
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the formal charge changes from zero (in the free pyridine) to +1 (in the pyridinium ion} in

8,9

7 . .
accord with the rule expressed above. Proton and electron transfer reactions, which often

obey rate-equilibrium relationships, fall into this same category.

In conclusion we note that correlations between reaction rates and equilibria, even for a
limited reaction family, are far from general, and are only likely to arise for reactions de-
scribed by the above mentioned rule. This, by necessity, will also contribute to breakdown in

10,11

the reactivity-selectivity principle, which derives its theoretical basis from the rate-

equilibrium relationship (eq. 2).10

The question as to the mechanistic significance of the Bronsted o parameter for cases where
a rate-equilibrium relationship is observed is a complex one. However anomalous o values4
(especially the o value of infinity obtained for the reaction of eq. 2), suggest that deductions
concerning TS structure based on o values are fraught with uncertainty. This uncertainty has

been recognized previou.slylz—15

and attributed inter alia to the multistep character of certain

R . 13 - . R
reactlons12 and unusual solvation effects. Similar conclusions have been reached regarding
electron transfer reactions9b where it has been suggested that o values signify neither a measure

of TS structure nor of charge development.

Our own work on the SNZ reaction of methyl derivativesl6’17

based on the valence-bond con-
. . . 1

figuration mixing (VBCM) model, 8 has suggested that even for one-step processes, in which no

unusual solvent effect takes place, that a values may not provide a direct measure of TS struc-

ture or charge development.16’17

Under the circumstances therefore we believe that this applica-
tion of o (and B) values be undertaken with caution until a clearer understanding of the mech-
anistic implications of the Bronsted parameter is obtained. Work in this direction is currently

under way.
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